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Relaxation time for the ionic current in a nematic cell under a large electric field
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We evaluate the ionic relaxation time of a nematic cell subjected to a potential difference, V), very large with
respect to Vy=KgT/q=0.025 V, where KzT is the thermal energy, and ¢ the electrical charge of the ions,
assumed monovalent. The analysis is performed by assuming that the mobilities of the positive and negative

ions are the same, and that the ions can be considered pointlike. We show that, for V> V7, the relaxation time
tends to the time of flight of the ions. In our analysis the ionic charges are assumed to form two surface layers
responsible for a partial screening of the external field. In this framework, the evolution of the surface-charge
density is determined by a simple differential equation related to the conservation of the ions number. Accord-
ing to our calculations, the relaxation time of the surface density of ionic origin, and of the electrical potential
close to the electrodes, depends on the applied voltage, in agreement with the experimental observations.
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I. INTRODUCTION

Nematic liquid crystals used in displays usually contain
ions, which are responsible for their rather large ionic con-
ductivity [1,2]. When an external field is applied to a liquid
crystal cell, the ionic impurities move close to the electrode
of opposite sign, causing a reduction of the effective electric
field in the bulk [3,4]. The time evolutions of the ions den-
sities present in a nematic liquid crystal cell subjected to an
external electrical voltage V,, are determined by solving the
equations of continuity for the positive and negative ions,
and the equation of Poisson for the electrical potential [5].
Recently, the problem of the diffuse-charge dynamics in
electrochemical system has been reconsidered by Bazant er
al. [6], by assuming that the positive and negative ions are
pointlike, and they have the same mobility in the liquid in
which they are dispersed. In this framework they show that,
for small applied voltages (V< V;=KzT/g=0.025 V, where
KpT is the thermal energy and ¢ the electrical charge of the
ion, assumed monovalent), the evolution of the bulk density
of ions and of the potential is simply exponential, and they
deduce the relaxation time. On the contrary, for large applied
voltages (V,> V), the time evolution of the bulk density of
ions is more complicated. By analyzing numerically the
problem with the same simplifying hypotheses of pointlike
ions with the same mobility, we have shown [7] that the time
evolution of the electric voltage can still be well approxi-
mated by a simple exponential, whose relaxation time de-
pends on the applied voltage. By using simple arguments we
proposed a formula for the relaxation time containing two
free parameters, able to fit in a reasonable manner the nu-
merical results. In this framework, a possible approach to
obtain an approximated formula for the relaxation time could
be based on the analogy of the present problem with the one
named Maxwell-Wagner relaxation [8]. By assuming that the
ions collected close to the electrodes can be assimilated to a
dielectric medium, with dielectric constant equal to that of
the bulk, it is possible to write an expression for the relax-
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ation time similar to Eq. (16) of Ref. [4], where L
=d(V;/V,) [3]. However, following this approach, some
questions remain unanswered: (i) is the diffusion of the ions
taken into account? (ii) is it necessary to take into account
both types of ions in the electrical current? (iii) what is the
screening effect of these boundary ionic layers on the bulk
electric field acting on the ions responsible for the migration
of the ions close to the electrodes? Another way to face the
problem is to assume that the ions collected close to the
electrodes give rise to a charge surface-density, whose time
evolution is controlled by the electric field in the bulk [3,9].
Even in this case it is not clear how to write the total current
responsible for the collection of ions close to the electrodes,
and if the effective electric field in the bulk takes into ac-
count, correctly, the ions already pushed towards the elec-
trodes. The aim of the present paper is to analyze the dynam-
ics of the ions present in the dielectric liquid when the cell is
subjected to a large external electrical voltage, and to deduce
a formula for the relaxation time of the current flowing in the
circuit containing the sample. As in Refs. [6,7] we assume
that the ions are pointlike, and that the positive and negative
ions have the same mobility. Since we are considering ions
dissolved in a nematic liquid crystal, where the hydration
phenomenon is absent, the assumption that the ions have the
same mobility can be considered reasonable, and the result
of our calculations can be considered as a first approximation
of the problem under investigation.

II. THEORY

We assume that the sample is in the shape of a slab of
thickness d, and that N is the bulk density of positive and
negative ions, in thermodynamical equilibrium (i.e., for d
— oo and in the absence of the external electric field). The
Cartesian reference frame has the z axis normal to the bound-
ing surfaces, coinciding with that of the electrodes. In this
framework all physical quantities entering in the problem
depend only on the coordinate z and time ¢. In the presence
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of an external electric field, we indicate by n, and n,, the
bulk densities of positive and negative ions, respectively, by
V the electrical potential, by V,, the difference of potential
applied to the cell by means of an external power supply, and
assume that V(d/2,t)==V(-d/2,1)=V,/2. Due to the sym-
metry of the problem it follows that V(z,1)=-V(-z,t). The
basic equations of the problem are

on Jd(dn %
—£=D—(—£+an—), (1)
ot oz\ dz  KgT " oz
on,, 9 (dn, v
m_pa(m o, W)
ot oz\ dz KgT oz

PV q

—=—-=(n,—-n,), 3

P 8( » = ) (3)

where D is the diffusion coefficient of the ions. As stated
before, we have assumed that D,=D,, =D, consistently with
the hypothesis that the ions are identical in all the aspects
except for the sign of the electrical charge, and that the equa-
tion of Einstein-Smolucowsky between the mobility, u, and
the diffusion coefficient, D, holds [u/D=q/(KzT)]. Equa-
tions (1) and (2) are strongly nonlinear due to the presence of
n,(dV/dz), and analogous for n,,, in the equation of continu-
ity. Consequently, an analytical solution is possible only in
the case in which dn,=n,~N<N. As discussed in Ref. [6]
this implies that Vy<<V;=K3T/q. Here, on the contrary, we
are interested in the evolution of the ionic charge in the nem-
atic cell when V(> V;. In this case, practically all the ions
are pushed close to the electrodes [10]. This means that the
bulk density of positive ions is very large close to the nega-
tive electrode, and vice versa for the negative ions, but in the
bulk it is negligibly small [11]. In the presence of the exter-
nal voltage V|, we indicate by n;, the bulk density of positive
ions, equal to that of negative ions. The densities of the posi-
tive and negative ions close to the electrode of opposite sign
are indicated by n,(z) and n,,(z), respectively. The thickness
of the surface layer in which are confined the ionic charges is
indicated by €, where € ~d(Vy/V,) [3]. Since n,(z)>n,, as
well as n,,(z)>n,, we can introduce the concept of surface
density of ions according to the relations

—d12+¢

o,= f_d/z n,(2)dz=(n,)¢, 4)
dr

O = f n,(2)dz=(n,)¢, (5)
dn-¢

where, due to the symmetry of the problem, (n,)=(n,,)=n,. It
follows that o,=0,,=o=n{, and n;>n,, [10]. In the follow-
ing we consider just the positive charges localized in the
surface layer (-=d/2,-d/2+{). However, due to the symme-
try of the problem, similar results are valid also for the nega-
tive charges localized in (d/2-€,d/2). From Eq. (1), inte-
grating from —d/2 to —d/2++4, and taking into account Eq.
(4) we get
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From the discussion made above we have that
on
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Furthermore, since the electrodes are assumed to be block-
ing, the current density of positive ions must vanish on the
electrode. This implies that

17 v
—D<—”ﬁ+inp—> =0. (8)
0z KBT 0z —dn

Equation (8) simply states that the ions cannot leave the
sample. If the adsorption-desorption phenomenon is present
[5], close to the limiting surfaces the ions are subjected also
to a localized potential responsible for the adsorption, whose
penetration range is mesoscopic [12]. In this case, as dis-
cussed in Ref. [13], it is possible to write a kinetic equation
describing the accumulation of particles in the mesoscopic
layer close to the electrodes. However, Eq. (8) remains valid.
In our case, the evolutions of the bulk densities of ions and
of the electrical potential depend on the densities of ions
localized close to the limiting surfaces. In this sense, it does
not matter if they are close to the electrodes or adsorbed by
them. It follows that Eq. (6) can be rewritten as

d D v
o, (),
d[ KBT (9Z b

in which the subscript b states for bulk. The number of ions
of a given sign, per unit area, is

an
f n,(z)dz=Nd, (10)
—dr

where N is the bulk density of ions in thermodynamical equi-
librium introduced above. Consequently, the bulk density of
ions, n,, when on the boundary-surface layer is present the
surface density of ions o, is given by

n,=N-o,/d. (11)

By taking into account these results, and the symmetry of the
problem, from Eq. (9) we obtain the differential equation [4]

do < U)(&V)
—=u|N-——|| — |, (12)
dt d az/,,

where u=¢gD/(KzT). We stress that Eq. (12) was obtained
from the equation of continuity of the positive ions, and it
takes into account the diffusion current. To proceed further it
is necessary to evaluate the electric field in the bulk,
(V13z),,, when the ionic charges have formed the boundary-
surface layers, whose surface densities are +o.

III. BULK ELECTRIC FIELD

In order to evaluate the bulk electric field we take into
account that in the sample there are two boundary-surface
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layers, whose bulk electrical charge densities are p,=nq
=p, for —d/2=<z<-d/2+¢, and p,,=—n,q=—p, for d/2—¢
<z=d/2. It follows that the Poisson’s equations of the prob-
lem under consideration are

da*v p
. (13)
d*v,

?zb=0, (14)
v, p

P 19

where V(2)=V(-d/2<z<-d/2+{), V,(z)=V(-d/2+{<z
<d/2-¢), and V,(z)=V(d/2—-€<z<d/2) [14]. From Egs.
(13)—(15), taking into account that V(z)=-V(-z), we get

Vl (Z) == (p/2s)z2 + .z — Bs’ (1 6)
Vi(2) = a2, (17)
Vy(2) = (pl2e)2* + az + By, (18)

where «,, «a;, and B, are integration constants to be deter-
mined by imposing the boundary conditions V(-d/2) =
=Vy!2, Vi(=dI2+€)=V,(=d/2+€), and dV,/dz=dV,/dz, for
z=—d/2+¥, connected with the continuity of the electrical
potential and of the electrical displacement. Simple calcula-
tions give

Vo pt

= -, 19
ap, d ed (19)

Vo p(d2)+€*—td

s , 20
T4 d 20
2
p(d
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It follows that the electric field in the bulk is
dVb VO (T€
El|l=—=—-g—, 22
|E,| - a T (22)
whereas the one at the surface is
o
|| = |Es| +47, (23)

in agreement with Eq. (3).
IV. TIME EVOLUTION OF THE SURFACE DENSITY

The differential equation (12), taking into account Eg.
(22), can be rewritten as

d

=g(r-0)(s-0), (24)
where g=pugf/(ed*), r=Nd, and s=&V,/(gf). The solution
of Eq. (24), such that ¢(0)=0, is
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where the relaxation time 7 is defined by
1 )% Ngd{
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T d

For practical applications it is better to rewrite Eq. (26) in
terms of the Debye length of the liquid containing ions, in
thermodynamical equilibrium, defined by N\j=eKzT/(2Ng?)
[12], taking into account that £=dV;/V, [3]. Simple calcu-

lations give
11 1 dvy\?
=
T 70 2 )\0V0

where 7,=d?/(uV,) is the flight time of the ion in the electric
field V,/d. An expression similar to Eq. (27) was proposed in
Ref. [7] by using simple considerations. We note that Eq.
(27) implies, in particular, that V,> (d/\,) V7. Since Eq. (27)
is valid in the limit of V{;> V7, it follows that the relaxation
time for the surface-charge density is of the order of 7,. The
current in the external circuit is given by j=d(¢E;)/dt, that
taking into account Eq. (22) and Eq. (23) can be written as

Vildo
i )
0

From Eq. (28) it follows that the relaxation time of the cur-
rent in the external circuit is also 7 given by Eq. (27). From
Eq. (28) it follows that the initial current in the circuit is
given by

. Vo Vr
J(0) = paN— (1 V())- (29)
In Eq. (27) the parameters characterizing the liquid are the
Debye length in thermodynamical equilibrium, \,, and the
mobility of the ions, u. It follows that measurements of the
relaxation time of the current as a function of the external
applied voltage, for V,> V, allow the determination of these
parameters by means of a best-fit procedure. In Ref. [7] the
expression for the relaxation time proposed is of the type

4v. 2 (-1
T=ATO|:1—B( T” : (30)
NoVo

where A and B were two numerical constants that could not
be determined by means of simple considerations. In Ref.
[7], comparing the exact numerical calculations with the pre-
dictions of Eq. (30), the best fit is obtained for A=1 and B
=1/2, in agreement with Eq. (27) reported above.

V. CONCLUSIONS

We have considered the relaxation of the ions and of the
electrical potential in a cell of dielectric liquid containing
ions subjected to a large difference of electrical potential
Vo> V. Our analysis has been performed by assuming that
the mobilities of the positive and negative ions are the same,
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and that the ions can be considered pointlike, as in the usual
Poisson-Boltzmann approximation [12]. We have assumed
that, for V>V, the ionic charges are responsible for two
surface densities of electrical charge. In this framework we
have determined the time evolution of the ionic charges col-
lected on the electrodes. Moreover, the bulk and surface elec-
tric field were calculated. By assuming that the electrodes are
perfectly blocking, we have determined the electrical current
in the circuit containing the cell, and shown that its relax-
ation time coincides with the one of the surface density of
charge. The physical parameters characterizing the system
under analysis are the Debye length and the mobility of the
ions. Hence the model proposed here can be used to deter-
mine these parameters, when the relaxation time of the cur-
rent in the external circuit is measured as a function of the
applied voltage to the sample. As stated above, the ions are
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assumed pointlike and this assumption implies that their den-
sity must be very small with respect to n,,=1/(2R)>, where
R, is of the order of the geometrical dimension of the ion. As
discussed in Ref. [3], in the static case, close to the electrode,
the bulk density of ions is of the order of N(V,/Vy). It fol-
lows that our analysis works well for N(Vy/Vy) <1/(2R,)?,
i.e., for V,<V;/[N(2R,)?]. This condition is always verified
for usual values of R, (~1 nm) and of N (<10%* m™).
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